C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs
نویسندگان
چکیده
In this paper the C Hermite interpolation problem by spatial Pythagorean-hodograph cubic biarcs is presented and a general algorithm to construct such interpolants is described. Each PH cubic segment interpolates C data at one point and they are then joined together with a C continuity at some unknown common point sharing some unknown tangent vector. Biarcs are expressed in a closed form with three shape parameters. Two of them are selected based on asymptotic approximation order, while the remaining one can be computed by minimizing the length of the biarc or by minimizing the elastic bending energy. The final interpolating spline curve is globally C continuous, it can be constructed locally and it exists for arbitrary Hermite data configurations.
منابع مشابه
A geometric product formulation for spatial Pythagorean hodograph curves with applications to Hermite interpolation
A novel formulation for spatial Pythagorean–hodograph (PH) curves, based on the geometric product of vectors from Clifford algebra, is proposed. Compared to the established quaternion representation, in which a hodograph is generated by a continuous sequence of scalings/rotations of a fixed unit vector n̂ , the new representation corresponds to a sequence of scalings/reflections of n̂ . The two r...
متن کاملApproximating curves and their offsets using biarcs and Pythagorean hodograph quintics
This paper compares two techniques for the approximation of the offsets to a given planar curve. The two methods are based on approximate conversion of the planar curve into circular splines and Pythagorean hodograph (PH) splines, respectively. The circular splines are obtained using a novel variant of biarc interpolation, while the PH splines are constructed via Hermite interpolation of C boun...
متن کاملRational approximation of rotation minimizing frames using Pythagorean–hodograph cubics
This article is devoted to the rotation minimizing frames that are associated with spatial curves. Firstly we summarize some results concerning the differential geometry of the sweeping surfaces which are generated by these frames (the so–called profile or moulding surfaces). In the second part of the article we describe a rational approximation scheme. This scheme is based on the use of spatia...
متن کاملC-shaped G2 Hermite interpolation with circular precision based on cubic PH curve interpolation
Based on the technique of C-shape G Hermite interpolation by cubic Pythagorean-Hodograph (PH) curve, we present a simple method for Cshape G Hermite interpolation by rational cubic Bézier curve. The method reproduces a circular arc when the input data come from it. Both the Bézier control points, which have the well understood geometrical meaning, and the weights of the resulting rational cubic...
متن کاملDesign of rational rotation-minimizing rigid body motions by Hermite interpolation
The construction of space curves with rational rotationminimizing frames (RRMF curves) by the interpolation of G1 Hermite data, i.e., initial/final points pi and pf and frames (ti,ui,vi) and (tf ,uf ,vf ), is addressed. Noting that the RRMF quintics form a proper subset of the spatial Pythagorean–hodograph (PH) quintics, characterized by a vector constraint on their quaternion coefficients, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 257 شماره
صفحات -
تاریخ انتشار 2014